

Course Material
(For AY 2021-22, ODD Sem)

by

S.Chandramohan

Assistant Professor-ECE

SCSVMV

ARTIFICIAL INTELLIGENCE

: AY-2021-22 - ODD SEMESTER

OBJECTIVES:

 The course aims to provide some fundamentals of AI and algorithms required to produce

AI systems able to exhibit limited human-like abilities, particularly in the form of

problem solving by search, representing and reasoning with knowledge and panning.

UNIT I (9 Hrs)

Introduction – Foundations of AI, the History of AI –Intelligent Agent – Agent and

Environment, Good Behaviour: The Concept of Rationality, Nature of Environments, Structure of

Agents- Problem Solving Agents -Example Problems.

UNIT II (9 Hrs)

Uninformed Searching strategies-Breadth First Search, Depth First search, Depth limited

search, Iterative deepening search, Bidirectional Search - Avoiding repeated States - Searching

with Partial information –Informed search strategies – Greedy Best First Search-A* Search-

Heuristic Functions- Local Search Algorithms for Optimization Problems-Local search in

Continuous Spaces.

UNIT III (9 Hrs)

Online Search Agents and Unknown Environments-Online Search Problems, Online Search

Agents- Online Local search, learning in Online Search – Constraint Satisfaction Problems-

Backtracking CSP, The Structure of Problems-Adversarial Search-Games, Optimal Decisions

in Games, Alpha- Beta Pruning.

UNIT IV (9 Hrs)

Logical agents – Knowledge Based Agents, The Wumpus World, Propositional Logic-A very

simple Logic –First Order logic– inferences in first order logic – forward chaining – backward

chaining – Unification – Resolution.

UNIT V (9 Hrs)

Planning with state space search – Partial-order planning – Planning graphs – Planning and acting

in the real world.

OUTCOMES: Total: 45 Hrs

At the end of the course students should able

to:

 Understand the fact that the computational complexity of most AI problems requires

us regularly to deal with approximate techniques;

 Appreciate different perspectives on what the problems of artificial intelligence are and

how different approaches are justified.

 Design basic problem solving methods based on AI-based search, knowledge

representation, reasoning with knowledge and panning.

TEXT BOOK:

1. S. Russel and P. Norvig, “Artificial Intelligence –A Modern Approach”, Second

Edition, Pearson Education 2003.

REFERENCES:

1. David Poole, Alan Mackworth, Randy Goebel, “Computational Intelligence: a Logical

Approach”, Oxford University Press, 2004.

2. G. Luger, “Artificial Intelligence: Structures and Strategies for Complex Problem Solving”,

Fourth Edition, Pearson Education, 2002.

S.Chandramohan, SCSVMV

Unit-1

Introduction

S.Chandramohan, SCSVMV

1.1 Instructional Objectives

– Understand the definition of artificial intelligence
– Understand the different faculties involved with intelligent behavior
– Examine the different ways of approaching AI
– Look at some example systems that use AI
– Trace briefly the history of AI
– Have a fair idea of the types of problems that can be currently solved by computers

and those that are as yet beyond its ability.

We will introduce the following entities:

 An agent

 An intelligent agent

 A rational agent

We will explain the notions of rationality and bounded rationality.

We will discuss different types of environment in which the agent might operate.

We will also talk about different agent architectures.

On completion of this lesson the student will be able to

 Understand what an agent is and how an agent interacts with the environment.

 Given a problem situation, the student should be able to

o identify the percepts available to the agent and

o the actions that the agent can execute.

 Understand the performance measures used to evaluate an agent

The student will become familiar with different agent architectures

 Stimulus response agents

 State based agents

 Deliberative / goal-directed agents

 Utility based agents

The student should be able to analyze a problem situation and be able to

 identify the characteristics of the environment

 Recommend the architecture of the desired agent

S.Chandramohan, SCSVMV

1.1.1 Definition of AI

What is AI ?

Artificial Intelligence is concerned with the design of intelligence in an artificial device.

The term was coined by McCarthy in 1956.

There are two ideas in the definition.

1. Intelligence

2. artificial device

What is intelligence?

– Is it that which characterize humans? Or is there an absolute standard of judgement?

– Accordingly there are two possibilities:

– A system with intelligence is expected to behave as intelligently as a human

– A system with intelligence is expected to behave in the best possible manner

– Secondly what type of behavior are we talking about?

– Are we looking at the thought process or reasoning ability of the system?

– Or are we only interested in the final manifestations of the system in terms of

its actions?

Given this scenario different interpretations have been used by different researchers as

defining the scope and view of Artificial Intelligence.

1. One view is that artificial intelligence is about designing systems that are as

intelligent as humans.

This view involves trying to understand human thought and an effort to build

machines that emulate the human thought process. This view is the cognitive

science approach to AI.

2. The second approach is best embodied by the concept of the Turing Test.

Turing held that in future computers can be programmed to acquire abilities

rivaling human intelligence. As part of his argument Turing put forward the idea

of an 'imitation game', in which a human being and a computer would be

interrogated under conditions where the interrogator would not know which was

which, the communication being entirely by textual messages. Turing argued that

if the interrogator could not distinguish them by questioning, then it would be

unreasonable not to call the computer intelligent. Turing's 'imitation game' is now

usually called 'the Turing test' for intelligence.

S.Chandramohan, SCSVMV

Turing Test

Consider the following setting. There are two rooms, A and B. One of the rooms

contains a computer. The other contains a human. The interrogator is outside and

does not know which one is a computer. He can ask questions through a teletype and

receives answers from both A and B. The interrogator needs to identify whether A or

B are humans. To pass the Turing test, the machine has to fool the interrogator into

believing that it is human. For more details on the Turing test visit the site

http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

3. Logic and laws of thought deals with studies of ideal or rational thought process

and inference. The emphasis in this case is on the inferencing mechanism, and its

properties. That is how the system arrives at a conclusion, or the reasoning behind

its selection of actions is very important in this point of view. The soundness and

completeness of the inference mechanisms are important here.

4. The fourth view of AI is that it is the study of rational agents. This view deals

with building machines that act rationally. The focus is on how the system acts

and performs, and not so much on the reasoning process. A rational agent is one

that acts rationally, that is, is in the best possible manner.

1.1.2 Typical AI problems

While studying the typical range of tasks that we might expect an “intelligent entity” to

perform, we need to consider both “common-place” tasks as well as expert tasks.

Examples of common-place tasks include

– Recognizing people, objects.

– Communicating (through natural language).

– Navigating around obstacles on the streets

http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

S.Chandramohan, SCSVMV

These tasks are done matter of factly and routinely by people and some other animals.

Expert tasks include:

 Medical diagnosis.

 Mathematical problem solving

 Playing games like chess

These tasks cannot be done by all people, and can only be performed by skilled

specialists.

Now, which of these tasks are easy and which ones are hard? Clearly tasks of the first

type are easy for humans to perform, and almost all are able to master them. The second

range of tasks requires skill development and/or intelligence and only some specialists

can perform them well. However, when we look at what computer systems have been

able to achieve to date, we see that their achievements include performing sophisticated

tasks like medical diagnosis, performing symbolic integration, proving theorems and

playing chess.

On the other hand it has proved to be very hard to make computer systems perform many

routine tasks that all humans and a lot of animals can do. Examples of such tasks include

navigating our way without running into things, catching prey and avoiding predators.

Humans and animals are also capable of interpreting complex sensory information. We

are able to recognize objects and people from the visual image that we receive. We are

also able to perform complex social functions.

Intelligent behaviour

This discussion brings us back to the question of what constitutes intelligent behaviour.

Some of these tasks and applications are:

 Perception involving image recognition and computer vision

 Reasoning

 Learning

 Understanding language involving natural language processing, speech processing

 Solving problems

 Robotics

1.1.3 Practical Impact of AI

AI components are embedded in numerous devices e.g. in copy machines for automatic

correction of operation for copy quality improvement. AI systems are in everyday use for

identifying credit card fraud, for advising doctors, for recognizing speech and in helping

complex planning tasks. Then there are intelligent tutoring systems that provide students

with personalized attention

S.Chandramohan, SCSVMV

Thus AI has increased understanding of the nature of intelligence and found many

applications. It has helped in the understanding of human reasoning, and of the nature of

intelligence. It has also helped us understand the complexity of modeling human

reasoning.

1.1.4 Approaches to AI

Strong AI aims to build machines that can truly reason and solve problems. These

machines should be self aware and their overall intellectual ability needs to be

indistinguishable from that of a human being. Excessive optimism in the 1950s and 1960s

concerning strong AI has given way to an appreciation of the extreme difficulty of the

problem. Strong AI maintains that suitably programmed machines are capable of

cognitive mental states.

Weak AI: deals with the creation of some form of computer-based artificial intelligence

that cannot truly reason and solve problems, but can act as if it were intelligent. Weak AI

holds that suitably programmed machines can simulate human cognition.

Applied AI: aims to produce commercially viable "smart" systems such as, for example,

a security system that is able to recognise the faces of people who are permitted to enter a

particular building. Applied AI has already enjoyed considerable success.

Cognitive AI: computers are used to test theories about how the human mind works--for

example, theories about how we recognise faces and other objects, or about how we solve

abstract problems.

1.1.5 Limits of AI Today

Today’s successful AI systems operate in well-defined domains and employ narrow,

specialized knowledge. Common sense knowledge is needed to function in complex,

open-ended worlds. Such a system also needs to understand unconstrained natural

language. However these capabilities are not yet fully present in today’s intelligent

systems.

What can AI systems do

Today’s AI systems have been able to achieve limited success in some of these tasks.

• In Computer vision, the systems are capable of face recognition

• In Robotics, we have been able to make vehicles that are mostly autonomous.

• In Natural language processing, we have systems that are capable of simple machine
translation.

• Today’s Expert systems can carry out medical diagnosis in a narrow domain

• Speech understanding systems are capable of recognizing several thousand words
continuous speech

• Planning and scheduling systems had been employed in scheduling experiments with

S.Chandramohan, SCSVMV

the Hubble Telescope.

• The Learning systems are capable of doing text categorization into about a 1000 topics

• In Games, AI systems can play at the Grand Master level in chess (world champion),
checkers, etc.

What can AI systems NOT do yet?

• Understand natural language robustly (e.g., read and understand articles in a
newspaper)

• Surf the web

• Interpret an arbitrary visual scene

• Learn a natural language

• Construct plans in dynamic real-time domains

• Exhibit true autonomy and intelligence

1.2 AI History

Intellectual roots of AI date back to the early studies of the nature of knowledge and

reasoning. The dream of making a computer imitate humans also has a very early history.

The concept of intelligent machines is found in Greek mythology. There is a story in the

8th century A.D about Pygmalion Olio, the legendary king of Cyprus. He fell in love with

an ivory statue he made to represent his ideal woman. The king prayed to the goddess

Aphrodite, and the goddess miraculously brought the statue to life. Other myths involve

human-like artifacts. As a present from Zeus to Europa, Hephaestus created Talos, a huge

robot. Talos was made of bronze and his duty was to patrol the beaches of Crete.

Aristotle (384-322 BC) developed an informal system of syllogistic logic, which is the

basis of the first formal deductive reasoning system.

Early in the 17th century, Descartes proposed that bodies of animals are nothing more

than complex machines.

Pascal in 1642 made the first mechanical digital calculating machine.

In the 19th century, George Boole developed a binary algebra representing (some) "laws

of thought."

Charles Babbage & Ada Byron worked on programmable mechanical calculating

machines.

In the late 19th century and early 20th century, mathematical philosophers like Gottlob

Frege, Bertram Russell, Alfred North Whitehead, and Kurt Gödel built on Boole's initial

logic concepts to develop mathematical representations of logic problems.

The advent of electronic computers provided a revolutionary advance in the ability to

S.Chandramohan, SCSVMV

study intelligence.

In 1943 McCulloch & Pitts developed a Boolean circuit model of brain. They wrote the

paper “A Logical Calculus of Ideas Immanent in Nervous Activity”, which explained

how it is possible for neural networks to compute.

Marvin Minsky and Dean Edmonds built the SNARC in 1951, which is the first

randomly wired neural network learning machine (SNARC stands for Stochastic Neural-

Analog Reinforcement Computer).It was a neural network computer that used 3000

vacuum tubes and a network with 40 neurons.

In 1950 Turing wrote an article on “Computing Machinery and Intelligence” which

articulated a complete vision of AI. For more on Alan Turing see the site

http://www.turing.org.uk/turing/

Turing’s paper talked of many things, of solving problems by searching through the space

of possible solutions, guided by heuristics. He illustrated his ideas on machine

intelligence by reference to chess. He even propounded the possibility of letting the

machine alter its own instructions so that machines can learn from experience.

In 1956 a famous conference took place in Dartmouth. The conference brought together

the founding fathers of artificial intelligence for the first time. In this meeting the term

“Artificial Intelligence” was adopted.

Between 1952 and 1956, Samuel had developed several programs for playing checkers.

In 1956, Newell & Simon’s Logic Theorist was published. It is considered by many to be

the first AI program. In 1959, Gelernter developed a Geometry Engine. In 1961 James

Slagle (PhD dissertation, MIT) wrote a symbolic integration program, SAINT. It was

written in LISP and solved calculus problems at the college freshman level. In 1963,

Thomas Evan's program Analogy was developed which could solve IQ test type

analogy problems.

In 1963, Edward A. Feigenbaum & Julian Feldman published Computers and Thought,

the first collection of articles about artificial intelligence.

In 1965, J. Allen Robinson invented a mechanical proof procedure, the Resolution

Method, which allowed programs to work efficiently with formal logic as a

representation language. In 1967, the Dendral program (Feigenbaum, Lederberg,

Buchanan, Sutherland at Stanford) was demonstrated which could interpret mass spectra

on organic chemical compounds. This was the first successful knowledge-based program

for scientific reasoning. In 1969 the SRI robot, Shakey, demonstrated combining

locomotion, perception and problem solving.

The years from 1969 to 1979 marked the early development of knowledge-based systems

In 1974: MYCIN demonstrated the power of rule-based systems for knowledge

representation and inference in medical diagnosis and therapy. Knowledge representation

http://www.turing.org.uk/turing/

S.Chandramohan, SCSVMV

schemes were developed. These included frames developed by Minski. Logic based

languages like Prolog and Planner were developed.

In the 1980s, Lisp Machines developed and marketed.

Around 1985, neural networks return to popularity

In 1988, there was a resurgence of probabilistic and decision-theoretic methods

The early AI systems used general systems, little knowledge. AI researchers realized that

specialized knowledge is required for rich tasks to focus reasoning.

The 1990's saw major advances in all areas of AI including the following:

 machine learning, data mining

 intelligent tutoring,

 case-based reasoning,

 multi-agent planning, scheduling,

 uncertain reasoning,

 natural language understanding and translation,

 vision, virtual reality, games, and other topics.

Rod Brooks' COG Project at MIT, with numerous collaborators, made significant

progress in building a humanoid robot

The first official Robo-Cup soccer match featuring table-top matches with 40 teams of

interacting robots was held in 1997. For details, see the site

http://murray.newcastle.edu.au/users/students/2002/c3012299/bg.html

In the late 90s, Web crawlers and other AI-based information extraction programs

become essential in widespread use of the world-wide-web.

Interactive robot pets ("smart toys") become commercially available, realizing the vision

of the 18th century novelty toy makers.

In 2000, the Nomad robot explores remote regions of Antarctica looking for meteorite

samples.

We will now look at a few famous AI system that has been developed over the years.

1. ALVINN:
Autonomous Land Vehicle In a Neural Network

In 1989, Dean Pomerleau at CMU created ALVINN. This is a system which learns to

control vehicles by watching a person drive. It contains a neural network whose input is a

30x32 unit two dimensional camera image. The output layer is a representation of the

direction the vehicle should travel.

The system drove a car from the East Coast of USA to the west coast, a total of about

http://murray.newcastle.edu.au/users/students/2002/c3012299/bg.html
http://www.ri.cmu.edu/projects/project_160.html

S.Chandramohan, SCSVMV

2850 miles. Out of this about 50 miles were driven by a human, and the rest solely by the

system.

2. Deep Blue
In 1997, the Deep Blue chess program created by IBM, beat the current world chess champion,

Gary Kasparov.

3. Machine translation

A system capable of translations between people speaking different languages will be a

remarkable achievement of enormous economic and cultural benefit. Machine translation is

one of the important fields of endeavour in AI. While some translating systems have been

developed, there is a lot of scope for improvement in translation quality.

4. Autonomous agents
In space exploration, robotic space probes autonomously monitor their surroundings, make

decisions and act to achieve their goals.

NASA's Mars rovers successfully completed their primary three-month missions in April,

2004. The Spirit rover had been exploring a range of Martian hills that took two months to

reach. It is finding curiously eroded rocks that may be new pieces to the puzzle of the

region's past. Spirit's twin, Opportunity, had been examining exposed rock layers inside a

crater.

5. Internet agents
The explosive growth of the internet has also led to growing interest in internet agents to

monitor users' tasks, seek needed information, and to learn which information is most

useful

For more information the reader may consult AI in the news:

http://www.aaai.org/AITopics/html/current.html

http://www.research.ibm.com/deepblue/
http://www.aaai.org/AITopics/html/current.html

S.Chandramohan, SCSVMV

Unit-2

Introduction to Agent

S.Chandramohan, SCSVMV

Environment
Agent Agent

1.3.1 Introduction to Agents

An agent acts in an environment.

Percepts

Actions

An agent perceives its environment through sensors. The complete set of inputs at a given

time is called a percept. The current percept, or a sequence of percepts can influence the

actions of an agent. The agent can change the environment through actuators or effectors.

An operation involving an effector is called an action. Actions can be grouped into action

sequences. The agent can have goals which it tries to achieve.

Thus, an agent can be looked upon as a system that implements a mapping from

percept sequences to actions.

A performance measure has to be used in order to evaluate an agent.

An autonomous agent decides autonomously which action to take in the current

situation to maximize progress towards its goals.

1.3.1.1 Agent Performance

An agent function implements a mapping from perception history to action. The behaviour

and performance of intelligent agents have to be evaluated in terms of the agent function.

The ideal mapping specifies which actions an agent ought to take at any point in time.

The performance measure is a subjective measure to characterize how successful an agent

is. The success can be measured in various ways. It can be measured in terms of speed or

efficiency of the agent. It can be measured by the accuracy or the quality of the solutions

achieved by the agent. It can also be measured by power usage, money, etc.

Agent
Environment

S.Chandramohan, SCSVMV

1.3.1.2 Examples of Agents

1. Humans can be looked upon as agents. They have eyes, ears, skin, taste buds, etc. for

sensors; and hands, fingers, legs, mouth for effectors.

S.Chandramohan, SCSVMV

2. Robots are agents. Robots may have camera, sonar, infrared, bumper, etc. for sensors.

They can have grippers, wheels, lights, speakers, etc. for actuators.

Some examples of robots are Xavier from CMU, COG from MIT, etc.

Xavier Robot (CMU)

Then we have the AIBO entertainment robot from SONY.

Aibo from SONY

3. We also have software agents or softbots that have some functions as sensors and some

functions as actuators. Askjeeves.com is an example of a softbot.

4. Expert systems like the Cardiologist is an agent.

5. Autonomous spacecrafts.

6. Intelligent buildings.

1.3.1.3 Agent Faculties

The fundamental faculties of intelligence are

 Acting

 Sensing

 Understanding, reasoning, learning

S.Chandramohan, SCSVMV

Blind action is not a characterization of intelligence. In order to act intelligently, one must

sense. Understanding is essential to interpret the sensory percepts and decide on an action.

Many robotic agents stress sensing and acting, and do not have understanding.

1.3.1.4 Intelligent Agents

An Intelligent Agent must sense, must act, must be autonomous (to some extent),. It also

must be rational.

AI is about building rational agents. An agent is something that perceives and acts.

A rational agent always does the right thing.

1. What are the functionalities (goals)?

2. What are the components?

3. How do we build them?

1.3.1.5 Rationality

Perfect Rationality assumes that the rational agent knows all and will take the action that

maximizes her utility. Human beings do not satisfy this definition of rationality.

Rational Action is the action that maximizes the expected value of the performance

measure given the percept sequence to date.

However, a rational agent is not omniscient. It does not know the actual outcome of its

actions, and it may not know certain aspects of its environment. Therefore rationality must

take into account the limitations of the agent. The agent has too select the best action to the

best of its knowledge depending on its percept sequence, its background knowledge and its

feasible actions. An agent also has to deal with the expected outcome of the actions where

the action effects are not deterministic.

1.3.1.6 Bounded Rationality

“Because of the limitations of the human mind, humans must use approximate methods to

handle many tasks.” Herbert Simon, 1972

Evolution did not give rise to optimal agents, but to agents which are in some senses locally

optimal at best. In 1957, Simon proposed the notion of Bounded Rationality:

that property of an agent that behaves in a manner that is nearly optimal with respect to its

goals as its resources will allow.

Under these promises an intelligent agent will be expected to act optimally to the best of its

abilities and its resource constraints.

S.Chandramohan, SCSVMV

1.3.2 Agent Environment
Environments in which agents operate can be defined in different ways. It is helpful to

view the following definitions as referring to the way the environment appears from the

point of view of the agent itself.

1.3.2.1 Observability

In terms of observability, an environment can be characterized as fully observable or

partially observable.

In a fully observable environment all of the environment relevant to the action being

considered is observable. In such environments, the agent does not need to keep track of

the changes in the environment. A chess playing system is an example of a system that

operates in a fully observable environment.

In a partially observable environment, the relevant features of the environment are only

partially observable. A bridge playing program is an example of a system operating in a

partially observable environment.

1.3.2.2 Determinism

In deterministic environments, the next state of the environment is completely described by

the current state and the agent’s action. Image analysis systems are examples of this kind of

situation. The processed image is determined completely by the current image and the

processing operations.

If an element of interference or uncertainty occurs then the environment is stochastic. Note

that a deterministic yet partially observable environment will appear to be stochastic to the

agent. Examples of this are the automatic vehicles that navigate a terrain, say, the Mars

rovers robot. The new environment in which the vehicle is in is stochastic in nature.

If the environment state is wholly determined by the preceding state and the actions of

multiple agents, then the environment is said to be strategic. Example: Chess. There are

two agents, the players and the next state of the board is strategically determined by the

players’ actions.

1.3.2.3 Episodicity

An episodic environment means that subsequent episodes do not depend on what actions

occurred in previous episodes.

In a sequential environment, the agent engages in a series of connected episodes.

S.Chandramohan, SCSVMV

1.3.2.4 Dynamism

Static Environment: does not change from one state to the next while the agent is

S.Chandramohan, SCSVMV

considering its course of action. The only changes to the environment are those caused by

the agent itself.

 A static environment does not change while the agent is thinking.

 The passage of time as an agent deliberates is irrelevant.

 The agent doesn’t need to observe the world during deliberation.

A Dynamic Environment changes over time independent of the actions of the agent -- and

thus if an agent does not respond in a timely manner, this counts as a choice to do nothing

1.3.2.5 Continuity

If the number of distinct percepts and actions is limited, the environment is discrete,

otherwise it is continuous.

1.3.2.6 Presence of Other agents

Single agent/ Multi-agent

A multi-agent environment has other agents. If the environment contains other intelligent

agents, the agent needs to be concerned about strategic, game-theoretic aspects of the

environment (for either cooperative or competitive agents)

Most engineering environments do not have multi-agent properties, whereas most social

and economic systems get their complexity from the interactions of (more or less) rational

agents.

1.3.3 Agent architectures
We will next discuss various agent architectures.

1.3.3.1 Table based agent

In table based agent the action is looked up from a table based on information about the

agent’s percepts. A table is simple way to specify a mapping from percepts to actions. The

mapping is implicitly defined by a program. The mapping may be implemented by a rule

based system, by a neural network or by a procedure.

There are several disadvantages to a table based system. The tables may become very large.

Learning a table may take a very long time, especially if the table is large. Such systems

usually have little autonomy, as all actions are pre-determined.

1.3.3.2. Percept based agent or reflex agent

In percept based agents,

1. information comes from sensors - percepts

2. changes the agents current state of the world

S.Chandramohan, SCSVMV

3. triggers actions through the effectors

S.Chandramohan, SCSVMV

Such agents are called reactive agents or stimulus-response agents. Reactive agents have no

notion of history. The current state is as the sensors see it right now. The action is based

on the current percepts only.

The following are some of the characteristics of percept-based agents.

 Efficient

 No internal representation for reasoning, inference.

 No strategic planning, learning.

 Percept-based agents are not good for multiple, opposing, goals.

1.3.3.3 Subsumption Architecture

We will now briefly describe the subsumption architecture (Rodney Brooks, 1986). This

architecture is based on reactive systems. Brooks notes that in lower animals there is no

deliberation and the actions are based on sensory inputs. But even lower animals are

capable of many complex tasks. His argument is to follow the evolutionary path and build

simple agents for complex worlds.

The main features of Brooks’ architecture are.

 There is no explicit knowledge representation

 Behaviour is distributed, not centralized

 Response to stimuli is reflexive

 The design is bottom up, and complex behaviours are fashioned from the

combination of simpler underlying ones.

 Individual agents are simple

The Subsumption Architecture built in layers. There are different layers of behaviour. The

higher layers can override lower layers. Each activity is modeled by a finite state machine.

The subsumption architecture can be illustrated by Brooks’ Mobile Robot example.

S.Chandramohan, SCSVMV

The system is built in three layers.

1. Layer 0: Avoid Obstacles

2. Layer1: Wander behaviour

3. Layer 2: Exploration behaviour

Layer 0 (Avoid Obstacles) has the following capabilities:

 Sonar: generate sonar scan

 Collide: send HALT message to forward

 Feel force: signal sent to run-away, turn

Layer1 (Wander behaviour)

 Generates a random heading

 Avoid reads repulsive force, generates new heading, feeds to turn and forward

Layer2 (Exploration behaviour)

 Whenlook notices idle time and looks for an interesting place.

 Pathplan sends new direction to avoid.

 Integrate monitors path and sends them to the path plan.

1.3.3.4 State-based Agent or model-based reflex agent

State based agents differ from percept based agents in that such agents maintain some sort

of state based on the percept sequence received so far. The state is updated regularly based

on what the agent senses, and the agent’s actions. Keeping track of the state requires that

Subsumption Architecture

Avoid
Motor

Wander

Explore

S.Chandramohan, SCSVMV

the agent has knowledge about how the world evolves, and how the agent’s actions affect

the world.

Thus a state based agent works as follows:

 information comes from sensors - percepts

 based on this, the agent changes the current state of the world

 based on state of the world and knowledge (memory), it triggers actions through

the effectors

1.3.3.5 Goal-based Agent

The goal based agent has some goal which forms a basis of its actions.

Such agents work as follows:

 information comes from sensors - percepts

 changes the agents current state of the world

 based on state of the world and knowledge (memory) and goals/intentions, it

chooses actions and does them through the effectors.

Goal formulation based on the current situation is a way of solving many problems and

search is a universal problem solving mechanism in AI. The sequence of steps required to

solve a problem is not known a priori and must be determined by a systematic exploration

of the alternatives.

1.3.3.6 Utility-based Agent

Utility based agents provides a more general agent framework. In case that the agent has

multiple goals, this framework can accommodate different preferences for the different

goals.

Such systems are characterized by a utility function that maps a state or a sequence of

states to a real valued utility. The agent acts so as to maximize expected utility

1.3.3.7 Learning Agent

Learning allows an agent to operate in initially unknown environments. The learning

element modifies the performance element. Learning is required for true autonomy

1.4 Conclusion
In conclusion AI is a truly fascinating field. It deals with exciting but hard problems. A

goal of AI is to build intelligent agents that act so as to optimize performance.

 An agent perceives and acts in an environment, has an architecture, and is implemented

by an agent program.

 An ideal agent always chooses the action which maximizes its expected performance,

given its percept sequence so far.

 An autonomous agent uses its own experience rather than built-in knowledge of the

S.Chandramohan, SCSVMV

environment by the designer.

 An agent program maps from percept to action and updates its internal state.

S.Chandramohan, SCSVMV

 Reflex agents respond immediately to percepts.

 Goal-based agents act in order to achieve their goal(s).

 Utility-based agents maximize their own utility function.

 Representing knowledge is important for successful agent design.

 The most challenging environments are partially observable, stochastic, sequential,

dynamic, and continuous, and contain multiple intelligent agents.

Questions
1. Define intelligence.

2. What are the different approaches in defining artificial intelligence?

3. Suppose you design a machine to pass the Turing test. What are the capabilities

such a machine must have?

4. Design ten questions to pose to a man/machine that is taking the Turing test.

5. Do you think that building an artificially intelligent computer automatically shed

light on the nature of natural intelligence?

6. List 5 tasks that you will like a computer to be able to do within the next 5 years.

7. List 5 tasks that computers are unlikely to be able to do in the next 10 years.

8. Define an agent.

9. What is a rational agent ?

10. What is bounded rationality ?

11. What is an autonomous agent ?

12. Describe the salient features of an agent.

13. Find out about the Mars rover.

1. What are the percepts for this agent ?

2. Characterize the operating environment.

3. What are the actions the agent can take ?

4. How can one evaluate the performance of the agent ?

5. What sort of agent architecture do you think is most suitable for this agent ?

14. Answer the same questions as above for an Internet shopping agent.

Answers
1. Intelligence is a rather hard to define term.

Intelligence is often defined in terms of what we understand as intelligence in humans.

Allen Newell defines intelligence as the ability to bring all the knowledge a system has

at its disposal to bear in the solution of a problem.

A more practical definition that has been used in the context of building artificial

S.Chandramohan, SCSVMV

systems with intelligence is to perform better on tasks that humans currently do better.

2.

• Thinking rationally

• Acting rationally

• Thinking like a human

• Acting like a human

S.Chandramohan, SCSVMV

3.

• Natural language processing

• Knowledge representation

• Automated reasoning

• Machine Learning

• Computer vision

• Robotics

4-7 : Use your own imagination

8. An agent is anything that can be viewed as perceiving its environment through sensors

and executing actions using actuators.

9. A rational agent always selects an action based on the percept sequence it has received

so as to maximize its (expected) performance measure given the percepts it has

received and the knowledge possessed by it.

10. A rational agent that can use only bounded resources cannot exhibit the optimal

behaviour. A bounded rational agent does the best possible job of selecting good

actions given its goal, and given its bounded resources.

11. Autonomous agents are software entities that are capable of independent action in

dynamic, unpredictable environments. An autonomous agent can learn and adapt to a

new environment.

12.12.

 An agent perceives its environment using sensors

 An agent takes actions in the environment using actuators

 A rational agent acts so as to reach its goal, or to maximize its utility

 Reactive agents decide their action on the basis of their current state and the

percepts. Deliberative agents reason about their goals to decide their action.

13. Mars Rover

a. Spirit’s sensor include

i. panoramic and microscopic cameras,

ii. a radio receiver,

iii. spectrometers for studying rock samples including an alpha particle x-ray

spectrometer, M¨ossbauer spectrometer, and miniature thermal emission

spectrometer

b. The environment (the Martian surface)

i. partially observable,

ii. non-deterministic,

iii. sequential,

iv. dynamic,

v. continuous, and

vi. may be single-agent. If a rover must cooperate with its mother ship or other

rovers, or if mischievous Martians tamper with its progress, then the

environment gains additional agents

S.Chandramohan, SCSVMV

c. The rover Spirit has

i. motor-driven wheels for locomotion

ii. along with a robotic arm to bring sensors close to interesting rocks and a

iii. rock abrasion tool (RAT) capable of efficiently drilling 45mm holes in

hard volcanic rock.

iv. Spirit also has a radio transmitter for communication.

d. Performance measure: A Mars rover may be tasked with

i. maximizing the distance or variety of terrain it traverses,

ii. or with collecting as many samples as possible,

iii. or with finding life (for which it receives 1 point if it succeeds, and 0

points if it fails).

Criteria such as maximizing lifetime or minimizing power consumption are (at

best) derived from more fundamental goals; e.g., if it crashes or runs out of power

in the field, then it can’t explore.

e. A model-based reflex agent is suitable for low level navigation.

For route planning, experimentation etc, some combination of goal-based, and

utility-based would be needed.

14. Internet book shopping agent

f. Sensors: Ability to parse Web pages, interface for user requests
g. Environment: Internet. Partially observable, partly deterministic, sequential,

partly static, discrete, single-agent (exception: auctions)

h. Actuators: Ability to follow links, fill in forms, display info to user

i. Performance Measure: Obtains requested books, minimizes cost/time
j. Agent architecture: goal based agent with utilities fro open-ended situations

S.Chandramohan, SCSVMV

UNIT-3

ONLINE SEARCH AGENTS AND UNKNOWN ENVIRONMENTS

An online search agent operatesby interleaving computation and action: first it

takes an action and then it observes the environment and computes the next

action. Online search is a good idea in dynamic or semi dynamic domains-

domains where there is a penalty for sitting around and computing too long.

Online search is an even better idea for stochastic domains.

(The term "online" is commonly used in computer science to refer to

algorithms that must process input data as they are received, rather than

waiting for the entire input data set to become available.)

In general, an offline search would have to come up with an exponentially

large contingency plan that considers all possible happenings, while an online

search need only consider what actually does happen.

For example,

A chess playing agent is well-advised to make its first move long before it has

figured out the complete course of the game. Online search is a necessary idea

for an exploration problem, where the states and actions are unknown to the

agent. An agent in this state of Ignorance must use its actions as experiments

to determine what to do next, and hence must interleave computation and

action.

The canonical example of online search is a robot that is placed in a new

building and must explore it to build a map that it can use for getting from A to

B. Methods for escaping from labyrinths-required knowledge for aspiring

heroes of antiquity-are also examples of online search algorithms. Spatial

exploration is not the only form of exploration, however.

Online search problems

An online search problem can be solved only by an agent executing actions,

rather than by a purely computational process. We will assume that the agent

knows just the following:

S.Chandramohan, SCSVMV

ACTIONS(S), which returns a list of actions allowed in state s;

The step-cost function c(s, a, sl)-note that this cannot be used until the agent

knows that sl is the outcome; and

GOAL-TEST(S).

Note in particular that the agent cannot access the successors of a state except

by actually trying all the actions in that state. For example, in the maze

problem shown in Figure, the agent does not know that going Up from (1,l)

leads to (1,2); nor, having done that, does it know that going Down will take it

back to (1,l). This degree of ignorance can be reduced in some applications-for

example, a robot explorer might know how its movement actions work and be

ignorant only of the locations of obstacles.

We will assume that the agent can always recognize a state that it has visited

before, and we will assume that the actions are deterministic. Finally, the agent

might have access to an, admissible heuristic function h(s) that estimates the

distance from the current state to a goal state. For example, in Figure, the agent

might know the location of the goal and be able to use the Manhattan distance

heuristic.

Typically, the agent's objective is to reach a goal state while minimizing cost.

(Another possible objective is simply to explore the entire environment.) The

cost is the total path cost of the path that the agent actually travels. It is

common to compare this cost with the path cost of the path the agent would

follow if it knew the search space in advance-that is, the actual shortest path

(or shortest complete exploration). In the language of online algorithms

this is called the competitive ratio; we would like it to be as small as possible.

Although this sounds like a reasonable request, it is easy to see that the best

achievable competitive ratio is infinite in some cases. For example, if some

actions are irreversible, the online search might accidentally reach a dead-end

state from which no goal state is reachable.

S.Chandramohan, SCSVMV

 Figure: A simpIe maze problem.

The agent starts at S and must reach G, but knows nothing of the environment.

 (a) (b)

(a) Two state spaces that might lead an online search agent into a dead

end.Any given agent will fail in at least one of these spaces.

(b) A two-dimensional environment that can cause an online search agent to

follow an arbitrarily inefficient route to the goal. Whichever choice the agent

makes, the adversary blocks that route with another long, thin wall, so that the

path followed is much longer than the best possible path.

Perhaps you find the term "accidentally" unconvincing-after all, there might be

an algorithm that happens not to take the dead-end path as it explores. Our

claim, to be more precise, is that no algorithm can avoid dead ends in all state

spaces.

Consider the two dead-end state spaces in Figure (a). To an online search

algorithm that has visited states S and A, the two state spaces look identical, so

it must make the same decision in both. Therefore, it will fail in one of them.

This is an example of an adversary argument-we can imagine an adversary that

constructs the state space while the agent explores it and can put the goals and

dead ends wherever it likes.

S.Chandramohan, SCSVMV

Dead ends are a real difficulty for robot exploration--staircases, ramps, cliffs,

and all kinds of natural terrain present opportunities for irreversible actions. To

make progress, we will simply assume that the state space is safely explorable-

that is, some goal state is reachable from every reachable state. State spaces

with reversible actions, such as mazes and 8-puzzles, can be viewed as

undirected graphs and are clearly safely explorable.

Even in safely explorable environments, no bounded competitive ratio can be

guaranteed if there are paths of unbounded cost. This is easy to show in

environments with irreversible actions, but in fact it remains true for the

reversible case as well, as Figure (b) shows. For this reason, it is common to

describe the performance of online search algorithms in terms of the size of the

entire state space rather than just the depth of the shallowest goal.

Online search agents

After each action, an online agent receives a percept telling it what state it has

reached; from this information, it can augment its map of the environment. The

current map is used to decide where to go next. This interleaving of planning

and action means that online search algorithms are quite different from the

offline search algorithms we have seen previously.

For example, offline algorithms such as A* have the ability to expand a node

in one part of the space and then immediately expand a node in another part of

the space, because node expansion involves simulated rather than real actions.

An online algorithm, on the other hand, can expand only a node that it

physically occupies. To avoid traveling all the way across the tree to expand

the next node, it seems better to expand nodes in a local order.

Depth-first search has exactly this property, because (except when

backtracking) the next node expanded is a child of the previous node

expanded.

An online depth-first search agent is shown in Figure. This agent stores its

map in a table, result [a, s], that records the state resulting from executing

action a in state s. whenever an action from the current state has not been

explored, the agent tries that action.

The difficulty comes when the agent has tried all the actions in a state. In

offline depth-first search, the state is simply dropped from the queue; in an

online search, the agent has to backtrack physically.

S.Chandramohan, SCSVMV

In depth-first search, this means going back to the state from which the agent

entered the current state most recently. That is achieved by keeping a table that

lists, for each state, the predecessor states to which the agent has riot yet

backtracked. If the agent has run out of states to which it can backtrack, then

its search is complete.

The progress of ONLINE-DFS-AGENT can be traced when applied to the

maze given in Figure. It is fairly easy to see that the agent will, in the worst

case, end up traversing every link in the state space exactly twice.

For exploration, this is optimal; for finding a goal, on the other hand, the

agent's competitive ratio could be arbitrarily bad if it goes off on a long

excursion when there is a goal right next to the initial state. An online variant

of iterative deepening solves this problem; for an environment that is a

uniform tree, the competitive ratio of such an agent is a small constant.

Because of its method of backtracking, ONLINE-DFS-AGENT works only in

state spaces where the actions are reversible. There are slightly more complex

algorithms that work in general state spaces, but no such algorithm has a

bounded competitive ratio.

S.Chandramohan, SCSVMV

Figure: An online search agent that uses depth-first exploration.

The agent is applicable only in bidirected search spaces.

Online local search

Like depth-first search, hill-climbing search has the property of locality in its

node expansions. In fact, because it keeps just one current state in memory,

hill-climbing search is already an online search algorithm! Unfortunately, it is

not very useful in its simplest form because it leaves the agent sitting at local

maxima with nowhere to go. Moreover, random restarts cannot be used,

because the agent cannot transport itself to a new state.

Instead of random restarts, one might consider using a random walk to explore

the environment. A random walk simply selects at random one of the available

actions from the current state; preference can be given to actions that have not

yet been tried. It is easy to prove that a random walk will eventually find a

goal or complete its exploration, provided that the space is finite.15 On the

other hand, the process can be very slow. Figure shows an environment in

which a random walk will take exponentially many steps to find the goal,

because, at each step, backward progress is twice as likely as forward progress.

The example is contrived, of course, but there are many real-world state spaces

whose topology causes these kinds of "traps" for random walks.

S.Chandramohan, SCSVMV

Augmenting hill climbing with memory rather than randomness turns out to be

a more effective approach. The basic idea is to store a "current best estimate"

H(s) of the cost to reach the goal from each state that has been visited. H(s)

starts out being just the heuristic

Figure - An environment in which a random walk will take exponentially

many steps to find the goal.

estimate h(s) and is updated as the agent gains experience in the state space.

Figure shows a simple example in a one-dimensional state space. In (a), the

agent seems to be stuck in a flat local minimum at the shaded state. Rather

than staying where it is, the agent should follow what seems to be the best path

to the goal based on the current cost estimates for its neighbors. The estimated

cost to reach the goal through a neighbor s is the cost to get to s plus the

estimated cost to get to a goal from there-that is, c(s, a, s) + H(st).

In the example, there are two actions with estimated costs 1 + 9 and 1 + 2, so it

seems best to move right. Now, it is clear that the cost estimate of 2 for the

shaded state was overly optimistic. Since the best move cost 1 and led to a

state that is at least 2 steps from a goal, the shaded state must be at least 3 steps

from a goal, so its H should be updated accordingly, as shown in Figure.

Continuing this process, the agent will move back and forth twice more,

updating H each time and "flattening out" the local minimum until it escapes

to the right.

An agent implementing this scheme, which is called learning real-time A*

(LRTA*), is shown in Figure. Like ONLINE-DFS-AGENT, it builds a map of

the environment using the result table. It updates the cost estimate for the state

it has just left and then chooses the "apparently best" move according to its

current cost estimates. One important detail is that actions that have not yet

been tried in a state s are always assumed to lead immediately to the goal with

the least possible cost, namely h(s). This optimism under uncertainty

encourages the agent to explore new, possibly promising paths.

S.Chandramohan, SCSVMV

Learning in online search

The initial ignorance of online search agents provides several opportunities for

learning. First, the agents learn a "map" of the environment-more precisely, the

outcome of each action in each state-simply by recording each of their

experiences. (Notice that the assumption of deterministic environments means

that one experience is enough for each action.) Second, the local search agents

acquire more accurate estimates of the value of each state by using local

updating rules.

Five iterations of LRTA* on a one-dimensional state space. Each state is

labeled with H(s), the current cost estimate to reach a goal, and each arc is

labeled with its step cost. The shaded state marks the location of the agent, and

the updated values at each iteration are circled.

S.Chandramohan, SCSVMV

LRTA*-AGENT selects an action according to the values of neighboring

states, which are updated as the agent moves about the state space.

These updates eventually converge to exact values for every state, provided

that the agent explores the state space in the right way. Once exact values are

known, optimal decisions can be taken simply by moving to the highest-valued

successor-that is, pure hill climbing is then an optimal strategy.

If you followed our suggestion to trace the behavior of ONLINE-DFS-

AGENT in the environment, you will have noticed that the agent is not very

bright. For example, after it has seen that the Up action goes from (1,l) to (1,2),

the agent still has no idea that the Down action goes back to (1,1), or that the

Up action also goes from (2,l) to (2,2), from (2,2) to (2,3), and so on. In

general, we would like the agent to learn that Up increases the y-coordinate

unless there is a wall in the way, which Down reduces it, and so on. For this to

happen, we need two things. First, we need a formal and explicitly

representation for these kinds of general rules; so far, we have hidden the

information inside the black box called the successor function.

Constraint satisfaction problem (CSP)

S.Chandramohan, SCSVMV

Basically problems can be solved by searching in a space of states. These

states can be evaluated by domain-specific heuristics and tested to see whether

they are goal states. From the point of view of the search algorithm, however,

each state is a black box with no discernible internal structure. It is represented

by an arbitrary data structure that can be accessed only by the problem,

specific routines-the successor function, heuristic function, and goal test.

Constraint satisfaction problems, whose states and goal test conform to a

standard, structured, and very simple representation. Search algorithms can be

defined that take advantage of the structure of states and use general-purpose

rather than problem-specific heuristics to enable the solution of large

problems.

Perhaps most importantly, the standard representation of the goal test reveals

the structure of the problem itself. This leads to methods for problem

decomposition and to an understanding of the intimate connection between the

structure of a problem and the difficulty of solving it.

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a

set of variables, XI, X2,. . . , Xn, and a set of constraints, C1, (72,. . . , C,. Each

variable Xi has a nonempty domain Di of possible values. Each constraint Ci

involves some subset of the variables and specifies the allowable combinations

of values for that subset.

A state of the problem is defined by an assignment of values to some or all of

the variables, {Xi = vi, Xj =vj, . . .). An assignment that does not violate any

constraints is called a consistent or legal assignment. A complete assignment is

one in which every variable is mentioned, and a solution to a CSP is a

complete assignment that satisfies all the constraints. Some CSPs also require

a solution that maximizes an objective function.

So what does all this mean? Suppose we are looking at a map of Australia

showing each of its states and territories, as in Figure, and that we are given

the task of coloring each region either red, green, or blue in such a way that no

neighboring regions have the same color.

To formulate this as a CSP, we define the variables to be the regions: WA, NT,

Q, NSW, V, SA, and T. The domain of each variable is the set {red, green,

blue). The constraints require neighboring regions to have distinct colors; for

example, the allowable combinations for WA and NT are the pairs {(red,

green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)) .

(The constraint can also be represented more succinctly as the inequality WA #

S.Chandramohan, SCSVMV

NT, provided the constraint satisfaction algorithm has some way to evaluate

such expressions.) There are many possible solutions, such as {WA= red, NT

= green, Q = red, NSW = green, V= red, SA= blue, T= red).

Figure (a) The principal states and territories of Australia. Coloring this map

can be viewed as a constraint satisfaction problem. The goal is to assign colors

to each region so that no neighboring regions have the same color.

(b) The map-coloring problem represented as a constraint graph.

It is helpful to visualize a CSP as a constraint graph, as shown in Figure. The

nodes of the graph correspond to variables of the problem and the arcs

correspond to constraints. Treating a problem as a CSP confers several

important benefits. Because the representation of states in a CSP conforms to a

standard pattern-that is, a set of variables with assigned values-the successor

function and goal test can be written in a generic way that applies to all CSPs.

Furthermore, we can develop effective, generic heuristics that require no

additional, domain-specific expertise. Finally, the structure of the constraint

graph can be used to simplify the solution process, in some cases giving an

exponential reduction in complexity. The CSP representation is the first, and

S.Chandramohan, SCSVMV

simplest, in a series of representation schemes that will be developed

throughout the book.

It is fairly easy to see that a CSP can be given an incremental formulation as a

standard search problem as follows:

Initial state: the empty assignment {), in which all variables are unassigned.

Successor function: a value can be assigned to any unassigned variable,

provided that it does not conflict with previously assigned variables.

Goal test: the current assignment is complete.

Path cost: a constant cost (e.g., 1) for every step.

Every solution must be a complete assignment and therefore appears at depth n

if there are n variables. Furthermore, the search tree extends only to depth n.

For these reasons, depth first search algorithms are popular for CSPs.It is also

the case that the path by which a solution is reached is irrelevant. Hence, we

can also use a complete-state formulation, in which every state is a complete

assignment that might or might not satisfy the constraints. Local search

methods work well for this formulation.

The simplest kind of CSP involves variables that are discrete and have finite

domains. Map-coloring problems are of this kind.

Finite-domain CSPs include Boolean CSPs, whose variables can be either true

or false. Boolean CSPs include as special cases some NP-complete problems.

In the worst case, therefore, we cannot expect to solve finite-domain CSPs in

less than exponential time. In most practical applications, however, general-

purpose CSP algorithms can solve problems orders of magnitude larger than

those solvable via the general-purpose search algorithms

Discrete variables can also have infinite domains-for example, the set of

integers or the set of strings. For example, when scheduling construction jobs

onto a calendar, each job's start date is a variable and the possible values are

integer numbers of days from the current date.

With infinite domains, it is no longer possible to1 describe constraints by

enumerating all allowed combinations of values.

Special solution algorithms (which we will not discuss here) exist for linear

constraints on integer variables-that is, constraints, such as the one just given,

S.Chandramohan, SCSVMV

in which each variable appears only in linear form. It can be shown that no

algorithm exists for solving general nonlinear constraints on integer variables.

In some cases, we can reduce integer constraint problems to finite-domain

problems simply by bounding the values of all the variables.

For example, in a scheduling problem, we can set an upper bound equal to the

total length of all the jobs to be scheduled. Constraint satisfaction problems

with continuous (domains are very common in the real world and are widely

studied in the field of operations research. For example, the scheduling of

experiments on the Hubble Space Telescope requires very precise timing of

observations; the start and finish of each observation and maneuver are

continuous-valued variables that must obey a variety of astronomical,

precedence, and power constraints.

The best-known category of continuous-domain CSPs is that of linear

programming problems, where constraints must be linear inequalities forming

a convex region. Linear programming problems can be solved in time

polynomial in the number of variables. Problems with different types of

constraints and objective functions have also been studied-quadratic

programming, second order conic programming, and so on. In addition to

examining the types of variables that can appear in CSPs, it is useful to look at

the types of constraints.

The simplest type is the unary constraint, which restricts the value of a single

variable. For example, it could be the case that South Australians actively

dislike the color green. Every unary constraint can be eliminated simply by

preprocessing the domain of the corresponding variable to remove any value

that violates the constraint. A binary constraint relates two variables. For

example, SA # NSW is a binary constraint. A binary CSP is one with only

binary constraints; it can be represented as a constraint graph, as in Figure.

BACKTRACKING SEARCH FOR CSP

A problem is commutative if the order of application of any given set of

actions has no effect on the outcome. This is the case for CSPs because, when

assigning values to variables, we reach the same partial assignment, regardless

of order. Therefore, all CSP search algorithms generate successors by

considering possible assignments for only a single variable at each node in the

search tree. For example, at the root node of a search tree for coloring the map

of Australia, we might have a choice between SA = red, SA = green, and SA =

S.Chandramohan, SCSVMV

blue, but we would never choose between SA = red and WA = blue. With this

restriction, the number of leaves is dn.

A simple backtracking algorithm for constraint satisfaction problems. The

algorithm is modeled on the recursive depth-first search. The functions

SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES can

be used to implement the general-purpose heuristics discussed in the text.

Part of the search tree generated by simple backtracking for the map-coloring

problem

The term backtracking search is used for a depth-first search that chooses

values for one variable at a time and backtracks when a variable has no legal

values left to assign. The algorithm is shown in Figure. Notice that it uses, in

effect, the one-at-a-time method of incremental successor generation

described. Also, it extends the current assignment to generate a successor,

rather than copying it. Because the representation of CSPs is standardized,

there is no need to supply Backtracking-Search with a domain-specific initial

state, successor function, or goal test. Part of the search tree for the Australia

problem is shown in Figure, where we have assigned variables in the order

WA, NT, Q, . . … Plain backtracking is an uninformed algorithm, so we do not

S.Chandramohan, SCSVMV

expect it to be very effective for large problems. The results for some sample

problems are shown in the first column and confirm our expectations. It turns

out that we can solve CSPs efficiently without such domain-specific

knowledge.

Instead, we find general-purpose methods that address the following questions:

1. Which variable should be assigned next, and in what order should its values

be tried?

2. What are the implications of the current variable assignments for the other

unassigned variables?

3. When a path fails-that is, a state is reached in which a variable has no legal

values can the search avoid repeating this failure in subsequent paths?

The subsections that follow answer each of these questions in turn.

Variable and value ordering

The backtracking algorithm contains the line

Var - SELECT-UNASSIGNED-VARIABLE

(VARIABLES [csp], assignment, csp).

By default, SELECT-UNASSIGNED-VARIABLE simply selects the next

unassigned variable in the order given by the list VARIABLES [csp. This

static variable ordering seldom results in the most efficient search. For

example, after the assignments for WA = red and NT = green, there is only one

possible value for SA, so it makes sense to assign SA = blue next rather than

assigning Q. In fact, after SA is assigned, the choices for Q, NS W, and V are

all forced.

This intuitive idea-choosing the variable with the fewest "legal" values-is

called the minimum remaining values (MRV) heuristic. It also has been called

the "most constrained variable" or "fail-first" heuristic, the latter because it

picks a variable that is most likely to cause a failure soon, thereby pruning the

search tree. If there is a variable X with zero legal values remaining, the MRV

heuristic will select X and failure will be detected immediately-avoiding

pointless searches through other variables which always will fail when X is

finally selected.

Propagating information through constraints

 So far our search algorithm considers the constraints on a variable only

S.Chandramohan, SCSVMV

at the time that the variable is chosen by SELECT-UNASSIGNED-

VARIABLE. But by looking at some of the constraints earlier in the search, or

even before the search has started, we can drastically reduce the search space

Forward checking

 One way to make better use of constraints during search is called

forward checking. Whenever a variable X is assigned, the forward checking

process looks at each unassigned variable Y that is connected to X by a

constraint and deletes from Y's domain any value that is inconsistent with the

value chosen for X. Figure shows the progress of a map-coloring search with

forward checking. There are two important points to notice about this example.

The progress of a map-coloring search with forward checking. WA = red is

assigned first; then forward checking deletes red from the domains of the

neighboring variables NT and SA. After Q = green, green is deleted from the

domains of NT, SA, and NS W. After V = blue, blue is deleted from the

domains of NSW and SA, leaving SA with no legal values.

First, notice that after assigning WA = red and Q = green, the domains of NT

and SA are reduced to a single value; we have eliminated branching on these

variables altogether by propagating information from WA and Q. The MRV

heuristic, which is an obvious partner for forward checking, would

automatically select SA and NT next. (Indeed, we can view forward checking

as an efficient way to incrementally compute the information that the MRV

heuristic needs to do its job.) A second point to notice is that, after V = blue,

the domain of SA is empty. Hence, forward checking has detected that the

partial assignment {WA = red, Q = green, V = blue) is inconsistent with the

constraints of the problem, and the algorithm will therefore backtrack

immediately.

Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all

S.Chandramohan, SCSVMV

of them. For example, consider the third row of Figure. It shows that when

WA is red and Q is green, both NT and SA are forced to be blue. But they are,

adjacent and so cannot have the same value. Forward checking does not detect

this as an inconsistency, because it does not look far enough ahead. Constraint

propagation is the general term for propagating the implications of a constraint

on one variable onto other variables; In this case we need to propagate from

WA and Q onto NT and SA, (as was done by forward checking) and then onto

the constraint between NT and SA to detect the inconsistency. And we want to

do this fast: it is no good reducing the amount of search if we spend more time

propagating constraints than we would have spent doing a simple search.

The idea of arc consistency provides a fast method of constraint propagation

that is substantially stronger than forward checking. Here, ''arc" refers to a

directed arc in the constraint graph, such as the arc from SA to NS W. Given

the current domains of SA and NS W, the arc is consistent if, for every value x

of SA, there is some value y of NS W that is consistent with x. In the third row

of Figure, the current domains of SA and NSW are {blue) and {red, blue)

respectively. For SA = blue, there is a consistent assignment for NSW,

namely, NSW = red; therefore, the arc from SA to I1JS'W is consistent. On the

other hand, the reverse arc from NS W to SA is not consistent: for the

assignment NS W = blue, there is no consistent assignment for SA. The arc

can be made consistent by deleting the value blue from the domain of NS W.

Structure Of Problems

The structure of the problem, as represented by the constraint graph, can be

used to find solutions quickly. Most of the approaches here are very general

and are applicable to other problems besides CSPs, for example probabilistic

reasoning. After all, the only way we can possibly hope to deal with the real

world is to decompose it into many sub problems.

Intuitively, it is obvious that coloring Tasmania and coloring the mainland are

independent sub problems-any solution for the mainland combined with any

solution for Tasmania yields a solution for the whole map. Independence can

be ascertained simply by looking for connected components of the constraint

graph. Each component corresponds to a sub problem CSPi. If assignment S, is

a solution of CSP,, then U, S, is a solution of U, CSP,. Why is this important?

Consider the following: suppose each CSP, has c variables from the total of n

variables, where c is a constant. Then there are n/c sub problems, each of

which takes at most dC work to solve. Hence, the total work is O(dcn/c), which

is linear in n; without the decomposition, the total work is O(dn), which is

S.Chandramohan, SCSVMV

exponential in n.

(a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the

variables consistent with the tree with A as the root.

Let's make this more concrete: dividing a Boolean CSP with n = 80 into four

sub problems with c = 20 reduce the worst-case solution time from the lifetime

of the universe down to less than a second. Completely independent sub

problems are delicious, then, but rare. In most cases, the sub problems of a

CSP are connected.

The simplest case is when the constraint graph forms a tree: any two variables

are connected by at most one path.

The algorithm has the following steps:

1. Choose any variable as the root of the tree, and order the variables from the

root to the leaves in such a way that every node's parent in the tree precedes it

in the ordering. Label the variables XI, . . . , X, in order. Now, every variable

except the root has exactly one parent variable.

2. For j from n down to 2, apply arc consistency to the arc (Xi, Xj), where Xi

is the parent of Xj, removing values from DOMAIN[&] as necessary.

3. For j from 1 to n, assign any value for Xj consistent with the value assigned

for Xi, where Xi is the parent of Xj.

There are two key points to note. First, after step 2 the CSP is directionally

arc-consistent, so the assignment of values in step 3 requires no backtracking.

Second, by applying the arc-consistency checks in reverse order in step 2, the

algorithm ensures that any deleted values cannot endanger the consistency of

arcs that have been processed already. The complete algorithm runs in time

O(nd2).

S.Chandramohan, SCSVMV

Now that we have an efficient algorithm for trees, we can consider whether

more general constraint graphs can be reduced to trees somehow. There are

two primary ways to do this, one based on removing nodes and one based on

collapsing nodes together.

The first approach involves assigning values to some variables so that the

remaining variables form a tree. Consider the constraint graph for Australia,

shown again in Figure. If we could delete South Australia, the graph would

become a tree, as in (b). Fortunately, we can do this (in the graph, not the

continent) by fixing a value for SA and deleting from the domains of the other

variables any values that are inconsistent with the value chosen for SA.

Now, any solution for the CSP after SA and its constraints are removed will be

consistent with the value chosen for SA. (This works for binary CSPs; the

situation is more complicated with higher-order constraints.) Therefore, we

can solve the remaining tree with the algorithm given above and thus solve the

whole problem. Of course, in the general case (as opposed to map coloring)

the value chosen for SA could be the wrong one, so we would need to try each

of them.

The general algorithm is as follows:

1. Choose a subset S from variables [csp] such that the constraint graph

becomes a tree after removal of S. S is called a cycle cutset.

2. For each possible assignment to the variables in S that satisfies all

constraints on S,

S.Chandramohan, SCSVMV

 (a) remove from the domains of the remaining variables any values

that are inconsistent with the assignment for S, and

 (b) If the remaining CSP has a solution, return it together with the

assignment for S.

The second approach is based on constructing a tree decomposition of the

constraint graph into a set of connected subproblems. Each subproblem is

solved independently, and the resulting solutions are then combined. Like

most divide-and-conquer algorithms, this works well if no subproblem is too

large. Figure 5.12 shows a tree decomposition of the map coloring problem

into five subproblems.

A tree decomposition must satisfy the following three requirements:

Every variable in the original problem appears in at least one of the

subproblems. If two variables are connected by a constraint in the original

problem, they must appear together (along with the constraint) in at least one

of the subproblems.

If a variable appears in two subproblems in the tree, it must appear in every

subproblem along the path connecting those subproblems.

The first two conditions ensure that all the variables and constraints are

represented in the decomposition. The third condition seems rather technical,

but simply reflects the constraint that any given variable must have the same

value in every subproblem in which it appears; the links joining subproblems

in the tree enforce this constraint.

S.Chandramohan, SCSVMV

A tree decomposition of the constraint graph

We solve each subproblem independently; if anyone has no solution, we know

the entire problem has no solution. If we can solve all the subproblems, then

we attempt to construct global solution as follows. First, we view each

subproblem as a "mega-variable" whose domain is the set of all solutions for

the subproblem. For example, the leftmost subproblems in Figure is a map-

coloring problem with three variables and hence has six solutions-one is {WA

= red, SA = blue, NT = green). Then, we solve the constraints connecting the

subproblems using the efficient algorithm for trees given earlier.

The constraints between subproblems simply insist that the subproblem

solutions agree on their shared variables. For example, given the solution {WA

= red, SA = blue, NT = green) for the first subproblem, the only consistent

solution for the next subproblem is {SA I= blue, NT = green, Q = red). A

given constraint graph admits many tree decompositions; in choosing a

decomposition, the aim is to make the subproblems as small as possible. The

tree width of a tree decomposition of a graph is one less than the size of the

largest subproblem; the tree width of the graph itself is defined to be the

minimum tree width among all its tree decompositions.

If a graph has tree width w, and we are given the corresponding tree

decomposition, then the problem can be solved in O(ndW+1) time. Hence, CSPs

with constraint graphs of bounded tree width are solvable in polynomial time.

Unfortunately, finding the decomposition with minimal tree width is 1VP-

hard, but there are heuristic methods that work well in practice.

S.Chandramohan, SCSVMV

Adversarial Search

Adversarial search is a search, where we examine the problem which arises

when we try to plan ahead of the world and other agents are planning against

us.

o In previous topics, we have studied the search strategies which are only

associated with a single agent that aims to find the solution which often

expressed in the form of a sequence of actions.

o But, there might be some situations where more than one agent is

searching for the solution in the same search space, and this situation

usually occurs in game playing.

o The environment with more than one agent is termed as multi-agent

environment, in which each agent is an opponent of other agent and

playing against each other. Each agent needs to consider the action of

other agent and effect of that action on their performance.

o So, Searches in which two or more players with conflicting goals are

trying to explore the same search space for the solution, are called

adversarial searches, often known as Games.

o Games are modeled as a Search problem and heuristic evaluation

function, and these are the two main factors which help to model and

solve games in AI.

Types of Games in AI:

o Perfect information: A game with the perfect information is that in

which agents can look into the complete board. Agents have all the

information about the game, and they can see each other moves also.

Examples are Chess, Checkers, Go, etc.

o Imperfect information: If in a game agents do not have all information

about the game and not aware with what's going on, such type of games

S.Chandramohan, SCSVMV

are called the game with imperfect information, such as tic-tac-toe,

Battleship, blind, Bridge, etc.

o Deterministic games: Deterministic games are those games which

follow a strict pattern and set of rules for the games, and there is no

randomness associated with them. Examples are chess, Checkers, Go,

tic-tac-toe, etc.

o Non-deterministic games: Non-deterministic are those games which

have various unpredictable events and have a factor of chance or luck.

This factor of chance or luck is introduced by either dice or cards. These

are random, and each action response is not fixed. Such games are also

called as stochastic games. Example: Backgammon, Monopoly, Poker,

etc.

Zero-Sum Game

o Zero-sum games are adversarial search which involves pure

competition.

o In Zero-sum game each agent's gain or loss of utility is exactly balanced

by the losses or gains of utility of another agent.

o One player of the game try to maximize one single value, while other

player tries to minimize it.

o Each move by one player in the game is called as ply.

o Chess and tic-tac-toe are examples of a Zero-sum game.

Zero-sum game: Embedded thinking

The Zero-sum game involved embedded thinking in which one agent or player

is trying to figure out:

o What to do.

o How to decide the move

o Needs to think about his opponent as well

o The opponent also thinks what to do

S.Chandramohan, SCSVMV

Each of the players is trying to find out the response of his opponent to their

actions. This requires embedded thinking or backward reasoning to solve the

game problems in AI.

Optimal decision in games

A game can be defined as a type of search in AI which can be formalized of

the following elements:

o Initial state: It specifies how the game is set up at the start.

o Player(s): It specifies which player has moved in the state space.

o Action(s): It returns the set of legal moves in state space.

o Result(s, a): It is the transition model, which specifies the result of

moves in the state space.

o Terminal-Test(s): Terminal test is true if the game is over, else it is false

at any case. The state where the game ends is called terminal states.

o Utility(s, p): A utility function gives the final numeric value for a game

that ends in terminal states s for player p. It is also called payoff

function. For Chess, the outcomes are a win, loss, or draw and its payoff

values are +1, 0, ½. And for tic-tac-toe, utility values are +1, -1, and 0.

Game tree:

A game tree is a tree where nodes of the tree are the game states and Edges of

the tree are the moves by players. Game tree involves initial state, actions

function, and result Function.

Example: Tic-Tac-Toe game tree:

The following figure is showing part of the game-tree for tic-tac-toe game.

Following are some key points of the game:

o There are two players MAX and MIN.

o Players have an alternate turn and start with MAX.

o MAX maximizes the result of the game tree

o MIN minimizes the result.

S.Chandramohan, SCSVMV

Example Explanation:

o From the initial state, MAX has 9 possible moves as he starts first.

MAX place x and MIN place o, and both player plays alternatively until

we reach a leaf node where one player has three in a row or all squares

are filled.

o Both players will compute each node, minimax, the minimax value

which is the best achievable utility against an optimal adversary.

o Suppose both the players are well aware of the tic-tac-toe and playing

the best play. Each player is doing his best to prevent another one from

winning. MIN is acting against Max in the game.

S.Chandramohan, SCSVMV

o So in the game tree, we have a layer of Max, a layer of MIN, and each

layer is called as Ply. Max place x, then MIN puts o to prevent Max

from winning, and this game continues until the terminal node.

o In this either MIN wins, MAX wins, or it's a draw. This game-tree is the

whole search space of possibilities that MIN and MAX are playing tic-

tac-toe and taking turns alternately.

Hence adversarial Search for the minimax procedure works as follows:

o It aims to find the optimal strategy for MAX to win the game.

o It follows the approach of Depth-first search.

o In the game tree, optimal leaf node could appear at any depth of the tree.

o Propagate the minimax values up to the tree until the terminal node

discovered.

In a given game tree, the optimal strategy can be determined from the minimax

value of each node, which can be written as MINIMAX(n). MAX prefer to

move to a state of maximum value and MIN prefer to move to a state of

minimum value then:

Mini-Max Algorithm in Artificial Intelligence

o Mini-max algorithm is a recursive or backtracking algorithm which is

used in decision-making and game theory. It provides an optimal move

for the player assuming that opponent is also playing optimally.

o Mini-Max algorithm uses recursion to search through the game-tree.

S.Chandramohan, SCSVMV

o Min-Max algorithm is mostly used for game playing in AI. Such as

Chess, Checkers, tic-tac-toe, go, and various tow-players game. This

Algorithm computes the minimax decision for the current state.

o In this algorithm two players play the game, one is called MAX and

other is called MIN.

o Both the players fight it as the opponent player gets the minimum

benefit while they get the maximum benefit.

o Both Players of the game are opponent of each other, where MAX will

select the maximized value and MIN will select the minimized value.

o The minimax algorithm performs a depth-first search algorithm for the

exploration of the complete game tree.

o The minimax algorithm proceeds all the way down to the terminal node

of the tree, then backtrack the tree as the recursion.

Pseudo-code for MinMax Algorithm:

S.Chandramohan, SCSVMV

Initial call:

Minimax (node, 3, true)

Working of Min-Max Algorithm:

o The working of the minimax algorithm can be easily described using an

example. Below we have taken an example of game-tree which is

representing the two-player game.

o In this example, there are two players one is called Maximizer and other

is called Minimizer.

o Maximizer will try to get the Maximum possible score, and Minimizer

will try to get the minimum possible score.

S.Chandramohan, SCSVMV

o This algorithm applies DFS, so in this game-tree, we have to go all the

way through the leaves to reach the terminal nodes.

o At the terminal node, the terminal values are given so we will compare

those values and backtrack the tree until the initial state occurs.

Following are the main steps involved in solving the two-player game

tree:

Step-1: In the first step, the algorithm generates the entire game-tree and

applies the utility function to get the utility values for the terminal states. In the

below tree diagram, let's take A is the initial state of the tree. Suppose

maximizer takes first turn which has worst-case initial value =- infinity, and

minimize will take next turn which has worst-case initial value = +infinity.

Step 2: Now, first we find the utilities value for the Maximizer, its initial value

is -∞, so we will compare each value in terminal state with initial value of

Maximizer and determines the higher nodes values. It will find the maximum

among the all.

S.Chandramohan, SCSVMV

History of Java

o For node D max(-1,- -∞) => max(-1,4)= 4

o For Node E max(2, -∞) => max(2, 6)= 6

o For Node F max(-3, -∞) => max(-3,-5) = -3

o For node G max(0, -∞) = max(0, 7) = 7

Step 3: In the next step, it's a turn for minimizer, so it will compare all nodes

value with +∞, and will find the 3rd layer node values.

o For node B= min(4,6) = 4

o For node C= min (-3, 7) = -3

Step 4: Now it's a turn for Maximizer, and it will again choose the maximum

of all nodes value and find the maximum value for the root node. In this game

tree, there are only 4 layers, hence we reach immediately to the root node, but

in real games, there will be more than 4 layers.

o For node A max(4, -3)= 4

S.Chandramohan, SCSVMV

S.Chandramohan, SCSVMV

That was the complete workflow of the minimax two player game.

Properties of Mini-Max algorithm:

o Complete- Min-Max algorithm is Complete. It will definitely find a

solution (if exist), in the finite search tree.

o Optimal- Min-Max algorithm is optimal if both opponents are playing

optimally.

o Time complexity- As it performs DFS for the game-tree, so the time

complexity of Min-Max algorithm is O(bm), where b is branching factor

of the game-tree, and m is the maximum depth of the tree.

o Space Complexity- Space complexity of Mini-max algorithm is also

similar to DFS which is O(bm).

Limitation of the minimax Algorithm:

S.Chandramohan, SCSVMV

The main drawback of the minimax algorithm is that it gets really slow for

complex games such as Chess, go, etc. This type of games has a huge

branching factor, and the player has lots of choices to decide. This limitation

of the minimax algorithm can be improved from alpha-beta pruning.

Alpha-Beta Pruning

o Alpha-beta pruning is a modified version of the minimax algorithm. It is

an optimization technique for the minimax algorithm.

o As we have seen in the minimax search algorithm that the number of

game states it has to examine are exponential in depth of the tree. Since

we cannot eliminate the exponent, but we can cut it to half. Hence there

is a technique by which without checking each node of the game tree we

can compute the correct minimax decision, and this technique is

called pruning. This involves two threshold parameter Alpha and beta

for future expansion, so it is called alpha-beta pruning. It is also called

as Alpha-Beta Algorithm.

o Alpha-beta pruning can be applied at any depth of a tree, and sometimes

it not only prune the tree leaves but also entire sub-tree.

o The two-parameter can be defined as:

a. Alpha: The best (highest-value) choice we have found so far at any

point along the path of Maximizer. The initial value of alpha is -∞.

b. Beta: The best (lowest-value) choice we have found so far at any point

along the path of Minimizer. The initial value of beta is +∞.

The Alpha-beta pruning to a standard minimax algorithm returns the same

move as the standard algorithm does, but it removes all the nodes which are

not really affecting the final decision but making algorithm slow. Hence by

pruning these nodes, it makes the algorithm fast.

Condition for Alpha-beta pruning:

The main condition which required for alpha-beta pruning is α>=β

S.Chandramohan, SCSVMV

Key points about alpha-beta pruning:

o The Max player will only update the value of alpha.

o The Min player will only update the value of beta.

o While backtracking the tree, the node values will be passed to upper

nodes instead of values of alpha and beta.

o We will only pass the alpha, beta values to the child nodes.

Pseudo-code for Alpha-beta Pruning:

S.Chandramohan, SCSVMV

Working of Alpha-Beta Pruning:

Let's take an example of two-player search tree to understand the working of

Alpha-beta pruning

Step 1: At the first step the, Max player will start first move from node A

where α= -∞ and β= +∞, these value of alpha and beta passed down to node B

where again α= -∞ and β= +∞, and Node B passes the same value to its child

D.

S.Chandramohan, SCSVMV

Step 2: At Node D, the value of α will be calculated as its turn for Max. The

value of α is compared with firstly 2 and then 3, and the max (2, 3) = 3 will be

the value of α at node D and node value will also 3.

Step 3: Now algorithm backtrack to node B, where the value of β will change

as this is a turn of Min, Now β= +∞, will compare with the available

subsequent nodes value, i.e. min (∞, 3) = 3, hence at node B now α= -∞, and

β= 3.

S.Chandramohan, SCSVMV

In the next step, algorithm traverse the next successor of Node B which is node

E, and the values of α= -∞, and β= 3 will also be passed.

Step 4: At node E, Max will take its turn, and the value of alpha will change.

The current value of alpha will be compared with 5, so max (-∞, 5) = 5, hence

at node E α= 5 and β= 3, where α>=β, so the right successor of E will be

pruned, and algorithm will not traverse it, and the value at node E will be 5.

Step 5: At next step, algorithm again backtrack the tree, from node B to node

A. At node A, the value of alpha will be changed the maximum available value

is 3 as max (-∞, 3)= 3, and β= +∞, these two values now passes to right

successor of A which is Node C.

At node C, α=3 and β= +∞, and the same values will be passed on to node F.

S.Chandramohan, SCSVMV

Step 6: At node F, again the value of α will be compared with left child which

is 0, and max(3,0)= 3, and then compared with right child which is 1, and

max(3,1)= 3 still α remains 3, but the node value of F will become 1.

Step 7: Node F returns the node value 1 to node C, at C α= 3 and β= +∞, here

the value of beta will be changed, it will compare with 1 so min (∞, 1) = 1.

Now at C, α=3 and β= 1, and again it satisfies the condition α>=β, so the next

child of C which is G will be pruned, and the algorithm will not compute the

entire sub-tree G.

S.Chandramohan, SCSVMV

S.Chandramohan, SCSVMV

Step 8: C now returns the value of 1 to A here the best value for A is max (3,

1) = 3. Following is the final game tree which is the showing the nodes which

are computed and nodes which has never computed. Hence the optimal value

for the maximizer is 3 for this example.

S.Chandramohan, SCSVMV

Move Ordering in Alpha-Beta pruning:

The effectiveness of alpha-beta pruning is highly dependent on the order in

which each node is examined. Move order is an important aspect of alpha-beta

pruning.

It can be of two types:

o Worst ordering: In some cases, alpha-beta pruning algorithm does not

prune any of the leaves of the tree, and works exactly as minimax

algorithm. In this case, it also consumes more time because of alpha-

beta factors, such a move of pruning is called worst ordering. In this

case, the best move occurs on the right side of the tree. The time

complexity for such an order is O(bm).

o Ideal ordering: The ideal ordering for alpha-beta pruning occurs when

lots of pruning happens in the tree, and best moves occur at the left side

S.Chandramohan, SCSVMV

of the tree. We apply DFS hence it first search left of the tree and go

deep twice as minimax algorithm in the same amount of time.

Complexity in ideal ordering is O(bm/2).

Rules to find good ordering:

Following are some rules to find good ordering in alpha-beta pruning:

o Occur the best move from the shallowest node.

o Order the nodes in the tree such that the best nodes are checked first.

o Use domain knowledge while finding the best move. Ex: for Chess, try

order: captures first, then threats, then forward moves, backward moves.

o We can book keep the states, as there is a possibility that states may

repeat.

	Introduction
	1.1 Instructional Objectives
	1.1.1 Definition of AI
	What is AI ?
	Turing Test

	1.1.2 Typical AI problems
	Intelligent behaviour

	1.1.3 Practical Impact of AI
	1.1.4 Approaches to AI
	1.1.5 Limits of AI Today
	1.2 AI History
	1. ALVINN:
	2. Deep Blue
	3. Machine translation
	4. Autonomous agents
	5. Internet agents

	1.3.1 Introduction to Agents
	1.3.1.1 Agent Performance
	1.3.1.2 Examples of Agents
	1.3.1.3 Agent Faculties
	1.3.1.4 Intelligent Agents
	1.3.1.5 Rationality
	1.3.1.6 Bounded Rationality

	1.3.2 Agent Environment
	1.3.2.1 Observability
	1.3.2.2 Determinism
	1.3.2.3 Episodicity
	1.3.2.4 Dynamism
	1.3.2.5 Continuity
	1.3.2.6 Presence of Other agents

	1.3.3 Agent architectures
	1.3.3.1 Table based agent
	1.3.3.2. Percept based agent or reflex agent
	1.3.3.3 Subsumption Architecture
	1.3.3.4 State-based Agent or model-based reflex agent
	1.3.3.5 Goal-based Agent
	1.3.3.6 Utility-based Agent
	1.3.3.7 Learning Agent

	1.4 Conclusion
	Questions
	Answers
	Adversarial Search
	Types of Games in AI:
	Zero-Sum Game
	Zero-sum game: Embedded thinking
	Optimal decision in games

	Game tree:

	Mini-Max Algorithm in Artificial Intelligence
	Pseudo-code for MinMax Algorithm:
	Working of Min-Max Algorithm:
	Properties of Mini-Max algorithm:
	Limitation of the minimax Algorithm:

	Alpha-Beta Pruning
	Condition for Alpha-beta pruning:
	Key points about alpha-beta pruning:
	Pseudo-code for Alpha-beta Pruning:
	Working of Alpha-Beta Pruning:
	Move Ordering in Alpha-Beta pruning:
	Rules to find good ordering:

